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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2539 

APPLICATION OF VARIATIONAL METHODS TO TRANSONIC FLOWS 

WITH SHOCK WAVES 

By Chi-Teh Wang and Pei-Chi Chou 

SUMMARY 

Variational methods for the approximate solution of subsonic and 
transonic flows of a compressible fluid before the occurrence of shock 
waves have been carried out in previous papers. The methods fail as 
soon' as the shock waves occur as the flow behind the shock waves now 
becomes rotational and has variable entropy.  Since most transonic flows 
are accompanied by shock waves, a method which allows for shock waves 
and variable entropy is necessary for the study of such flows.  By 
modifying Bateman's variational principle for irrotational flows, it is 
shown that a variational principle for flows with rotation and variable 
entropy can be obtained.  By applying this variational principle to the' 
regions of flow behind shock waves and Bateman's original principle to 
the other regions in the fluid, shock equations can be directly obtained. 
A procedure for computing numerical solutions for such flows is suggested, 
and a numerical example is carried out. At high Mach number above a 
certain limiting value, the results show that irrotational flow fails. 
However, by inserting shock waves and allowing a part of the flow to be 
rotational, computation indicates that solution exists again. 

INTRODUCTION 

In previous papers (references 1 to 7) "the senior author and his 
associates have succeeded in applying the variational methods to the 
study of subsonic and transonic flows of a compressible fluid past 
arbitrary bodies before the occurrence of shock waves.  Numerical examples 
were carried out in the case of the flow past a circular cylinder, an ■■■.. 
elliptical cylinder, a Kaplan bump, a sphere, and an ellipsoid.  The 
results were found to check excellently with those computed by other 
methods.  These results indicate that the variational method will give 
good approximations to flows past either thick or thin bodies and at 
both low and high Mach numbers.  The method as formulated, however, can 
only be .applied to irrotational flows. As soon as shock waves occur the 
method fails because the flow behind the shocks then becomes rotational. 
As most transonic flows are accompanied by shock waves, different methods 
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which allow the rotationality of the flow as well as variable entropy 
must be formulated if any significant results are to be obtained from 
the studies of such flows. 

A reexamination of Bateman's variational principles (reference 8) 
indicates that with some modification the principle in terms of the 
stream function ty, which was originally formulated for irrotational 
flows, can also be applied to rotational flows with entropy change. The 
resulting variational integral is the same as the one recently obtained 
by Lin and Rubinov (reference 9).  In the study of transonic flows this 
integral is to be applied in the region of flow after shock waves and 
the original Bateman integral in the other regions.  It can be shown 
that the shock equations are directly obtainable from these principles. 
With the variational principles obtained, a direct method for the approxi- 
mate solution of transonic flow with shock waves may again be formulated 
following the Rayleigh-Ritz procedure.  The actual carrying out of such 
a method however was found too laborious.  Instead, Galerkin's method 
may be used which shortens the numerical work to a great extent.  In 
this report approximate solution in the case of the transonic flow past 
a circular cylinder has been carried out.  The results show that when 
the Mach number increases to a certain limiting value without allowing 
for shock waves the variational method does not have a solution. This 
probably indicates the breakdown of the irrotational flow.  By allowing 
the occurrence of shock waves, solution again exists. 

This work was conducted at the Daniel Guggenheim School of Aeronautics, 
College of Engineering, New York University, under the sponsorship and 
with the financial assistance of the National Advisory Committee for 
Aeronautics.  The authors are indebted to Professor F. K. Teichmann for 
his kind interest. 

SYMBOLS 

a velocity of sound 

Amn,Bmn,A
,
mn,B'mn   undetermined parameters 

Cp,cv specific heat at constant pressure and volume, 
respectively 

C
1J
C
2J
C
3 constants 

M Mach number  (q/a) 

n normal distance 
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P 

u 

v 

9 

M/ 

P 

üü 

u 

Subscripts 

s. 

pressure ' 

magnitude of velocity vector, with components u 
and v 

entropy- 

velocity component in x-direction 

velocity component in y-direction 

coordinates of a point in the fluid 

isentropic exponent lc~l cy) 

velocity potential function 

stream function 

mass density 

rotation of flow 

velocity of undisturbed stream 

denote differentiation in corresponding direction 

isentropic stagnation conditions for undisturbed 
stream 

conditions of undisturbed stream 

GOVERNING DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS 

Consider a steady two-dimensional flow passing a cylinder of 
arbitrary shape.  Most aerodynamic problems are concerned with either 
flow from rest or flow which is parallel and uniform at infinity.  In 
such cases before the occurrence of shock waves the flow is irrotational. 
As the speed of the flow increases, shock waves occur.. For example, the 
flow past an airfoil is shown in figure 1.  The flow is assumed to be 
subsonic at infinity.  Because of the presence of the airfoil, if the 
Mach number of the flow is sufficiently high there will be a region of 
supersonic flow near the surface of the airfoil, as shown by the dotted 
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lines in the figure. Shock waves will occur at some points on the 
surface in these supersonic regions and will terminate in the flow 
where local Mach number is equal to .1. Then in the region extending 
to infinity behind the shock waves and bounded by the stream lines 
passing through the points where the shock terminates, the flow is 
rotational and with variable entropy. For convenience, this region 
will be denoted by T>2,     and the region outside Dg, by D^.  Then 

in D]_ the following equations must be satisfied: 

(l) The two equations of motion 

uux + vuy = -Px/P 

uvx + wy = -Py/P 
>■ (i) 

where u and v are the velocity components in the x- and y-directions, 
p the density, and p the pressure, and the subscripts x and y 
indicate partial differentiation in the corresponding direction. 

(2) The equation of continuity 

(PU)X      +        (pV)y      =       0 (2) 

(3) The equation of state 

p = c-.p7 (3) 

where C]_ is a constant and y     is the ratio of specific heats.  If the 

subscript s  is used to indicate the stagnation conditions,  ci = P3/PS^' 

(h)  The irrotationality condition 

vx = 0 w 
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With aid of equation (k),  equation (l) can be integrated to give 

+ t =  c0 (5) 
(7 - DP  2  2 

where q^ = u^ + v^ and o.^    is another constant. 

The boundary conditions are that at infinity the velocity components 
u and v are equal to the given values, and on the solid boundary of 
the airfoil the normal component of the velocity vanishes. 

In region D2 the flow becomes now rotational and the entropy S 
is no longer a constant.  Here the governing differential equations are 
as follows: Equation of motion (l) and the equation of continuity (2) 
are still valid. The equation of state has to be changed to the 
following form: 

p = c3e
S/Cv P7 (6) 

where cv is the specific heat at constant volume and where cy is a 

constant. The energy equation is 

uSx + vSy = 0 (7) 

For flows derived from isentropic irrotational flows by a shock, there 
is the so-called condition of isoenergetic flow 

where eg is a constant throughout the flow, before and after the shocks. 
This equation is then identical to equation (5); it implies equation (7) 
when equations (l) and (2) are satisfied. 

The boundary condition at the solid body is the same as before; that 
is, the normal component of velocity must be zero. The condition at 
infinity, however, is no longer the same, because if the velocity were 
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constant at infinity the flow would again be irrotational. The correct 
boundary condition in this case is that the pressure must be a constant 
at infinity. 

Since the flow in a part of the domain is rotational, the velocity 
potential cp obviously cannot be- used and it is convenient to introduce 
in such cases the stream function \|r defined by 

pu = % 

pv = -TK 
(8) 

Equation (7) indicates that the entropy S is a constant along 
each streamline.  The entropy S can therefore be written in the 
following form: 

S = cvf(i|r) (9) 

and the equation of state (6) as 

p = Coef^'p7 (10) 

With some calculation, the rotation of the flow may be written in terms 
of \|r as follows: 

(Ü     =  VX  -  Uy 

c3p^'e
f(1tr)f«(t)/(7 - 1) 

(11) 

VARIATIOWAL PRINCIPLES 

Instead of studying the boundary-value problems as formulated in 
the preceding paragraphs, it is sometimes more convenient to study the 
associated variational problems, especially when the exact solutions of 
the differential equations are very difficult to obtain.  In such cases, 
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approximate methods of solution such as the Rayleigh-Ritz method and 
the Galerkin method will be extremely useful. 

For irrotational flows, two variational principles were given by 
Bateman (reference 8), one in terms of the velocity potential and the 
other in terms of the stream function.  The first one is more suitable 
for studying the flow passing arbitrary bodies and has been used by the 
senior author and his associates in computing such flows in refer- 
ences 1 to 7.  In the present case, the second principle which is 
expressed in terms of i|r  should be used. 

If the pressure is 

p = F(p) - pF'(p) (12) 

where F(p)  is some function of p and the prime indicates differentia- 
tion, the variational integral is 

Jl=, F(p) + (*x
2+V) 

2p 
dx dy (13) 

in which p and \|r are to be varied independently. 

Equation (12) is a differential equation of the Clairaut type. 

If p = cxp7, the solution of equation (12) is F(p) = cop - ^— 
7-1 

The integral Ji then becomes 

Jl = :2p - 
clP7   (^x2 + V5) 
7-1 2p 

dx dy (lh) 

The condition that 5JX = 0 then leads to 

7-1 
p7-l) .  1 L  2+ + 

2p 2
YX 6p dx dy 

Np)* + Np)^dxd*+hfn^ ds = 0 
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where the last integral is taken on the boundary of the domain.  If this 
line integral is zero, the condition 5J-j_ = 0 leads to the following 

equations 

M *
2 + **| + _2_£=c, 

2p^ \ A    HI       7   -   1 P 

ftcWx + (*y/p)y - 0 

as the Euler equations in the calculus of variation. The first equation 
is the Bernoulli equation and the second is the condition of irrotation- 
ality,. The condition of continuity is satisfied automatically by intro- 
ducing the stream function i. Thus if the line integral is equal to 
zero the vanishing of the first variation of J leads to the desired 
differential equations. If the line integral is not zero, as in similar 
cases discussed in references 1, 2, 6, and 10, the value of the integral 
must be subtracted from 8J]_ and Jj_    should be modified accordingly. 

It is interesting to note that although the variational integral (13) 
is formulated by Bateman for irrotational flow only, it is also valid 
for rotational flow if in equation (12) F(p)  is replaced by F(p,S) 
and is solved from the correct equation of state, equation (6) or (10). 
In this case 

OF coe >tWPy 

The  solution of this  differential equation may be written as 

F(p,Sj   = c„p  --Ü 
c,ef0lV 

7-1 (15) 

and a variational integral for the rotational flow after shock waves may 
be written as follows 

J2 = c2P 
c3e

f(*V 

Lf    (7 - 1). 
(*x2 + */)T 

2p 
^>dx dy (16) 



NACA TN 2539 

This  is  the  same  integral recently obtained by Lin and Rubinov  (refer- 
ence 9).    As before,  the  condition    0J2 = 0'  leads to 

7c3efMp7-l       (^2 + > 2) 

(7  -  1) 2p< 
Op  dx dy 

c3p7ef(t)f'(i|f) 

(7   -   1) (VP)x + (VP> 5T|T dx dy + 

i |* 8+ ds  = 0 
p on 

The  last  integral  is  again taken on the  boundary of the  domain, 
integral is  zero,  there  result" 

If this 

(%? + \2) , 7V =  c. 
2p< (7   -   l)p 2 

(♦x/Oi^V^'-S^2^'^*» 7-1 
(17) 

as the Euler's equations.  The first equation is the energy equation (5a) 
and the second equation is the rotation equation (ll).  With the aid of 
the second equation, the equations of motion (l) can be derived from the 
first equation as follows:  Writing the first equation in a slightly 
different form, 

-L^e^V"1 + i(u2 + v2)  = c2 7   _  1     J 2 

Differentiating it with respect to    x, 

7 c3ef(t)p7-2Px + __2__ c3efWp7-lt'(1f)yx + 

uux + wx = 0 
(18) 
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Since p = C3ef(^)p7, 

VX/P = 7cf^)p7-%x + mp7-lf,m> 

Substitution in equation (18) results in 

T + r^T c3P7ef(+)f (+)i *x + uux + wx = 0 (19) 

As  c3p7e
fMf'(\|f)/(7 - 1) = vx - Uy and i tx = v, equation (19) is 

identical to the equation of motion in the x-direction.  Similarly, 
differentiation of equation (17) with respect to y results in the other 
equation of motion. 

SHOCK CONDITIONS AS A RESULT OF VARIATIONAL PRINCIPLE 

In discussing the mathematical formulation of the problem the flow 
as shown in figure 1 may be put into a simplified form as shown in fig- 
ure 2,  where B1    and Bp_    denote the regions when the flow is irrota- 

tional and rotational, respectively, and C±_2    is the shock wave plus 

the common boundary.  The variational principle is that 

5J = 6JX + 5J2 = 0 

leads to the desired differential equations in the corresponding domain 
Here 

Ji   = 

'D, 

:2Pl 

;2p2 

clPl7   |   frlx
2 + nv

2) 
7-1 2Pl 

f(*2) 
cQe   v     l{ 

dx dy 

3e   K     V A   (^2x2 + V) 
(7 -1) 2p, 

dx dy       (20) 
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where as shown in the above expressions Jj_    is integrated over D]_ 

and J2 over Dg;  Pi^i and P2>
Alf2 indicate that p and i|f are 

different functions in the domains D]_ and D2;  and the func- 

tions P2_,  P2, ty-, >     and ^p are to he varied independently. The 

condition SJ = 0 therefore leads to 

'Dn 
c   ^ipi7"1  (^ix2 + v? 
2   (7-1)      2Pl

2 
bp1  dx dy 

'Dn 

'Vr 

(Mpl)x + (*ly/pl)y 5^1 dx dy + 

7c3e
f (^2)p27-l  (j2x2 + ^y2) 

(7 - 1) 2P; 
Sp2 dx dy - 

D 

:3P27e
ffe)f.(t2) 

(7 - 1) 

^ul pi ön   1 

(*2x/P2)x + (*2y/p2)3 5^2 dx dy + 

Pi 

JC2 P2 ön ^1-2 \pi ^n   ^  P2 an   2 J 

Consider the line integrals first.  On a part of Cj_ and C2 where 

the boundary is the surface of the body,  tyn  and ^ are equal to 

the.chosen constants. Then Sty-]_ = 5^ = 0, and the first two line 

integrals are zero.  These integrals may not be zero when taken over 
the other parts of the boundaries.  In such cases, the values of the 
integrals must be subtracted from SJ and J must be modified accord- 
ingly.  On the shock waves, if 

(l/Pl)(o^/ön) = (l/p2)(c^2/ön) (21) 
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and 

*3 = *? (22) 

the third integral vanishes.  Condition (21) requires the velocity- 
components tangent to a shock wave to be the same in passing through 
the shock.  Condition (22) is the continuity equation in crossing a 
shock wave.  On the common boundary, since it is a streamline, 
b^2_  = 5^2 = 0 and the line integral vanishes. 

When the line integrals are zero or modified to be zero, the 
following Euler equations are obtained from the well-known rules of the 
Calculus of Variation.  They are 

7?1     Ulx2  + ^lv2)      . /  x 
F^ +  1X

2pi2 
lY  = C? in »1 (23) 

>P2   + (*2x
2 + J2y2) =c  in D (2k) 

(7  -  1)P2      2p 2       
C2     ^ ™ 2 

kfe S + l(fe *2y) = -^^^'fa) fa  - *> ln "2 <26> 
Equations (23) and (2^) indicate that the energy in the fluid remains 
unchanged in crossing a shock wave.  With equations (23) and (25) and 
equations (24) and (26), the equation of motion can be derived; that is, 
the momentum of the flow also remains the same in crossing a shock.  The 
continuity equation is already given as equation (22).  Therefore, from 
the condition of 6J = 0, all the conditions in crossing a shock wave 
are obtained. 
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SUBSONIC AND TRANSONIC FLOWS PAST A CIRCULAR CYLINDER. 

BEFORE OCCURRENCE OF SHOCK WAVES 

As a first step to the solution of transonic flows with shock waves, 
the flow before the occurrence of shock waves will be considered. The 
variational integral J contains two variables, p and t.  Numerical 
calculation may be carried out by following the Rayleigh-Ritz procedure. 
Unlike the cases considered in references 1 to 6 where the velocity 
potential cp is used, the labor involved in the computation by taking ty 
and p as variables in the Rayleigh-Ritz method becomes excessively 
large.  Instead, Galerkin's method was found to be much more simple 
in this case.  The application of Galerkin's method to compressible- 
flow problems has been discussed in detail in references 3 and k  and 
can be briefly outlined as follows:  First the variables i|f and p 
are written in the form of series which satisfy the boundary conditions 
but with undetermined parameters, such as 

* = *o + YL   X V *m: 
m  n 

+ XT X'^nPmn 
> 

P = Pr 
m  n 

(27) 

where A^    and Bmn are the undetermined parameters, 

and Bmn are determined from the conditions 

,C2P 

(+X/P)X 
+ (+y/P)y 

1 oi 
ÖAmn 

dx dy = 0 

^-P?+1) - ±L2 + +J aP 

äBtnn 

Then Ajnn 

dx dy = 0 

(28). 

(29) 

With Amn and Bmn determined, equations (27) give an approximate solu- 

tion to the problem. 

It was found, however, that near the limiting Mach number where 
shock waves are about to occur, the p-series converges rather slowly and 
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many parameters have to be used.  The amount of work involved in the 
integration and in the solution of the resulting simultaneous equations 
with many parameters again becomes very great. A modified Galerkin 
method has been tried and it was found possible to reduce much of the 
numerical work. The method is essentially as follows:  Instead of 
determining B^ by Galerkin*s method, these parameters can be solved 

in terms of Amn from the Bernoulli equation: 

:2p2 - J12L 2    7-1 
(30) 

by the method of equal coefficients.  The parameters Amn then become 

the only unknowns and they are determined by the Galerkin method. 

In the case of two-dimensional flow past a circular cylinder with 
unit radius the boundary conditions are at r = »: 

P = P0 

(*0/por)
2 + (WP0)

2
 = U2 

and at r = 1 

% =  0 

Consider the case where the circulation is zero. The flow must then 
be symmetrical with respect to both the x- and y-axis.  The boundary 
conditions and the conditions of symmetry are satisfied if ty and p 
are assumed in series of the following forms: 

* = Pou (r - ?)sin e +1. L v/^" £&) sin n9 N
 m=l n=l   v   x   ' 

(3D 

and 

\   m=l n=0      x   / 
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Taking two parameters in t, equation (31) becomes 

t = P0U (r - i) sin B  + Au(i - ^ sin 6  + A^A - ^) sin 3e (33) 

Substituting equation (33) into equation (30) and equating the coeffi- 

cients of -—j- and cos n0, there result 

B10 = 0 

H> BH = iTTll^i + Al3 " X 

B. 
2Mr 

12      MO -  1    13 

Bln = 0    if    n   > 3 

B 
20      %?' '  1 

M. 

h ?)-# HAH2 + 1 + 5A132)-|(B112+B122|H 

B 
21      M0

2  -   1 2 \ 
kA±1 + UI;LA13 -  4A13) - BllB12H 

B. 22       M0
2  -   1 

M, 
2-("8A13 + 2A11A13) - #112H 

B, 
23      MO

2 - 1 

M, 

K*) B11B
12

H 
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B, - 1 1  -R     2tT 

^ " Mo2 -  1 ?    12 

B^    =0    if    n £ 5 
2n y 

B 3° "iJTT 2Mr '(All - An
2 -  3A13

2) -   (BllB21 + B12B22)H +  
(7  + 1)7  BU

2B12 

B 
31 " M02 -  1 

M0
2(-Au + An

2 + 3A13 -  6AUA13)   -  (2B12B20 + B^B^ 

B12B21 + B12B23)H +  (7  + 1)7| BU
3 + 1 BllB12

2 

B 
32      M0

2 -  1 

h    3 

■(B11B21 + B11B23 + 2B12B20 + B12B2U)H + -H^^ll2"^ + 

2 12 

B 
33-2 M0^ - 1 

-3M 2A10
2 - (B.B  + BnlB . + Bn B ^H + ^7 

^o 13   V 11 22   11 2k 12 21 .^ 2k        \ 11 

3B11B122) 

B 
3"      M/-1 ■0 

B    B       +B    B    ]E+   '7   +  1^y   B    2B 
11 23 12 22J 8 11    12 

B 
35     -Mo

2 - 1 
(B    B ,   + B    B    ^H +  (y  + 1)?f  B    B    2 

\ 11 2k 12 23j 8 n  12 

B 36 M 2  -  1 
■R      T»      TT   4-    (y   +   1)y    I»      3 

■B12B2UH + *—^  B12 
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B3n = 0 if n > 7 

B ho M02 - 1 

M, 
f- (5An

2 + 9A 2 

M.3 )-,(: B20 + 2B21 + 2B22 + 2B23 + 

322 |B^
2
 + BllB31 + B12B32) +  fr  + 1)7(|BU

2B20 +.^11
2Bg 

IBllB12B21 + iBuB12B23 + |B12
2B20 + JB12

2B24)  +   fr  ^(ft^ + 

3«    2B    2  ,   3B    V 
2B11 B12    + HB12 

B 1+1 M0
2 -  1 ¥(- uii   + 12An Ai3) " H(: 2B2QB2-J_ + ^21^22 + B22B23 + 

B23B2l+ + 2B11B30 + B11B32 + B12B31 + B12B33) 
+ (7 2 l)y(^: B,„2B      + 

12    21 

lBll
2B23 + BllBl2B20 + BllBl2B23 + iBuB12B24 + \\^21 + 

ir^2lU    3B_ + 3B    B    3 lBl2
2B23) +   (7+lW7-2)^ 

11    12      2  11 12 

B 42 M0
2 -  1 3MO

2A
11

A
13 - H(|B212 + 2B20B22 + B21B23 + B^B^ + BllB31 + 

BHB33 + 2B12B30 + B12B34)  +   {JL¥)L(\\*\0 + ¥ll\2 
+ \\l\k + 

B11B12B21 + |B
11

B
12

B23 + JB
12

2B
22)  

+   (y  + ^  -  2)(|Bll' + 

) 
Bll Bl22 
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B k3 M0
2 -  1 -H(2B20B23 + B21B22 + B21B2l, + 2B11B

32 + 2B11B
34 + 

2B12B31 + 2B12B35) + -H^^ll2^! + hl2B23 + 

B
11B12B20 + 2B11B12B22 + 2BHB12B24 + |B122;B21 + 2B12 B23)  + 

i7  + 1ll{7-2){¥ll\2 + hl*Jj 

B B22 + 2B20B24 + B21B23 
+ BllB33 + BllB35 + B12B33 + 

B12B36) + i2Lfik(tBll2B22 + ±\i%k + |B11B12B21 + |B11B12B23 

|B122B20 + |B122B2,) +   fr  +  l&fr-2^ + |B1X
2B122 + &J) 

+ 

B 
45 M0

2 -  1 -H(B21B24 + B22B23 + BllV + BHB36 + B12B
33)  

+ 

(7 
"2 \? 11

2B
23 

+ 2B11B12B22 + 2B11B12B2^ + V IT
B
12

2B
2IJ 

$k^ty (7 + 1)7(7  - 2)flB- 3 Bll B12 + 2B11B12~ 

B 
^      Mo2 -  1 "HfiB232 + B22B24 + B11B35 + B12V)  + LLT^L{^ll\k + 

2B11B12B23 + U:B12 B23'  + 
(7  +  1)7(7  - 2) fa,    2p    2\ 
 25 VTB11 B12 j 

B V^T? 

(y+i2((y-2)(iBuB^y 

-B11B12B24 + tB122B23) 
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B 
\8 V 

-HfiB, 

(7  + 1)7(7 

>2k 

2) 

+ Bi2B36;+ H^ii t\2%k)  + 

24 w (3*) 

B^n = 0    if n > 

where    H = 
M 2 

_ 7(7  + 1) For.given free-stream Mach number and 7, 
2 2(7  - 1) 

the    Bum's     are now expressed in terms  of    A,-,     and    A-^o-     In the 

numerical example, 12 parameters are taken in the p-series which seems 
to give satisfactory convergence at high Mach numbers. 

The condition of irrotationality is now the only differential 
equation remaining to he satisfied.  In terms of i|f and polar coordinates, 
equation (h)  becomes 

p \lr + 
P0t0 p(A*) = 0 (35) 

where 

AY   \r  +    r    +    £ 

The Galerkin equation for determining the parameters A^ is: 

r=» p9=2« 

r=lu 9=0 
Pr*r + ^|e__p(At) 

_     r       _ 
Ö* 

°TBI1 
r de dr = .0  (36) 
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With the two parameters    An    and    A13    in    \|r,    equation  (36) becomes: 

nr=oop8=2jt 

r=l^ 6=0 

p r=oon 0=2it 

r=l^ 0=0 

Pr^r + ^T _ p(M) 

(-*) 
sin 0 d0 dr = 0 (37) 

pr*r + ^T "  p(Alff)   f1 " "T) Sin 30 d0 dr = °       (38) 

Carrying out the  integration and taking    7  = IA05    the following 
equations are obtained for different values of    MQ.    The parameters 

taken  in the  p-series are    Bllf     B12,     B20,     B21,     B22,     B23,     B30, 

B31>     B32>     \o>     \l>     and    \2-     With tnese    Bmn
fs    there result 

at    M0 = 0.3: 

0.79l4l66A11 + O.Oll*-8886A13 = -O.O529632 + 0.0011372A11A1    - 

0.0290381AI;L
2
 - 0.0353153A13

2 + 

0.028ll+07A11
2A13 - 0.0368037A11A1 

2 - 

0.026577A!!3 - 0.0537032A133 

■-0.0lu6032Au + 2.lll3662A13 = 0.0565330 - 0.052l»-788A   A     - 

o.oo^9465A11
2 - 0.05i69i9A13

2 - 

o.o426662A11
2A13 + o.o6l4285A11A1 

2 + 

o.oi82iUAi;L
3 - o.0776527A1 

3 
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At    M0 = 0.4: 

0.893971%! - 0.0293(A5A13 = -0.1386222 - O.0363370A   A     - 

0.0208205A11
2 - 0.159l|-151A13

2 + 

0.0557317A11
2A13 - 0.i400827A11A13

2 - 

0.0837686A11
3 - 0.l685lllA13

3 

-0.1165173AH + 2.2l684o8A13 = 0.1313933 - 0.1462311^^2 - 

0.1092484A11
2 - o.20i|.6769A13

2 - 

0.053295An
2A13 + 0.3247757A11A13

2 + 

0.059l8llAi;L
3 - 0.l892021A13

3 

At    M0 = 0.48: 

1.0588773A1;L - 0.07928o6A13 = -0.3375697 - 0.0768956AnA     - 

O.030879AI;L
2
 - 0.7005271A   2 + 

0.0580232An
2A13 + 0.362238A11A    2 - 

0.0786318A1:L
3 - 0.1904891A133 

-0.2295625Ari + 2.2i5ll2A13 = 0.2795736 - 0.7384032A11A1   - 

0.2272091Ai;L
2 -  0.9122836A13

2 + 

0.210928A11
2A13 + 1.067842A11A13

2 + 

0. i269i45An
3 - 0.1446766A133 
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At M0 = 0.5: 

1.05880^5An - 0.09^396U13 = -0.^35^569 - 0.07^+03%-^-,3 - 

0.068763lAn
2 - 1.0282597A13

2 - 

0.0279679An
2A13 + 0.390^25A1;LA13

2 + 

1.236569AX1
3 - 0.5792328A133 

-0.2586206An + 2.15^37^9A13 = O.3V71313 - 0.9668059A11A13 - 

0.289680Un
2 - 1.293019U13

2 + 

0.4529877A11
2A13 + l.7020295A11A13

2 + 

0.l36l6l7A1]L
3 - 0.3869221A13

3 

These equations can be solved by the method of successive approxi- 
mation as outlined in references 1 and 2. The parameters at various 
Mach numbers and the computed maximum velocities at these Mach numbers 
are shown in table I. These values show good agreement with those 
obtained by other approximate methods.  At M0 = 0.5 the method of 
successive approximation fails, and it was found by graphical method 
that these equations do not have a solution.  This agrees with a previous 
investigation as reported in reference 7 where the velocity potential 9 
was used. This indicates that the flow is no longer irrotational and 
shock waves have probably appeared. The limiting free-stream Mach 
number is between 0.W3 and 0.5. This value is probably too high because 
only two parameters in ty  are used.  This fact has been discussed in 
reference J. 

To get an idea of the convergence of the i- and p-series, the values 
of maximum velocities and p at M0 = 0.^8 are computed and listed in 

tables II, III, and IV. The p-series does not appear to be convergent 
when the parameters B^ are added one by one, but if these parameters 

are added by the group the series becomes convergent. This can be seen 
by comparing the values of p and the maximum velocities with various 
numbers of B^'s as given in tables II and III. 
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TRANSONIC FLOW PAST A CIRCULAR CYLINDER WITH SHOCK WAVES 

When the free-stream Mach number reaches 0.5 there is no solution 
to the equations obtained by assuming irrotational flow in the entire 
domain.  Shock waves probably have occurred. Thus the flow is irrota- 
tional only in the region before the shock waves or Dj and becomes 

rotational in the region behind the shock waves D2. The approximate 
solution according to the modified Galerkin method can be carried out 
as follows: 

(1) The locations and the obliquity of the shock waves are first 
assumed from the best evidences available. 

(2) When the assumed shock waves are inserted in the flow, the 
domains D]_ and D2 are thus defined.  In the region Dj, the flow 

is still irrotational.  The boundary conditions are that the velocity 
at infinity is equal to the undisturbed velocity and on the surface of 
the body ty-^ must be equal to a chosen constant. The values of ty-, 

and p-L    may be assumed in the same form as in the case before the shock 

waves occur.  The parameters A^ and B^n are determined from the 

modified Galerkin method. The only difference between the present case 
and the previous case is that in this case the integrals are to be 
extended only in the region' B1    instead of the entire flow region. 

(3) The entropy distribution S = cyf(\|f)  in the flow after the 
.shock is to be assumed next.  From the flow conditions before the occur- 
rence of shock waves, a good approximation of f(ty) may be found by 
rough preliminary calculations. 

(k)  The boundary condition at infinity of the flow after the shock 
is that p  is equal to the constant pressure pQ.  With f(ty)  assumed, 

P0(
x>y) can be computed from equation (10) and the velocity distribution 

from equation (5a). 

(5) With the above boundary conditions and the condition that ty-, = ty2 
on the assumed shock waves and common streamlines" of D]_ and Do, ty2 

and p2 are then assumed in the forms of series with undetermined param- 

eters. These parameters can again be determined by the modified Galerkin 
method. 

(6) After these undetermined constants in tyj and ty2 are computed 

the «values of (l/pi) (ötyjän)  and  (l/p2) (öty2/ön)  at the shock waves 
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can be found and f(^)  is calculated.  If  (^/Pij (d^i/dn)  is not equal 

to  (l/P2) (äW^11)  and f(^)    found is not the same as f (i) assumed, 
as is generally the case, adjust the locations and the obliquity of the 
shock waves. Then based on the new position and shape of the shock waves, 
assume a new f(^) and repeat the computations aggin until these values 
check with each other in two consecutive cycles. 

A numerical example Will now be carried out.  With i]_ and p]_ as 

assumed in equations (31) and (32) and by taking 2 parameters A]_]_ 
and A]_3 in equation (31) and 12 parameters in equation (32), it was 
found that there does not exist a solution at M0 = 0.5-  In refer- 
ence 11 it is shown that when the shock waves first occur they are 
almost normal shocks located near the point of maximum velocity. As 
a first approximation, assume that at MQ = 0.5 there are two normal 
shock waves located at 0 = it/2 and 3^/2 from r = 1 to r = 1.5. 
The separating streamlines between the regions D]_ and D2 are assumed 
to be the same as the streamlines -in the flow at MQ = O.hQ    passing 
through the points r = 1.5 and 6 =  rt/2,  3^/2. 

To determine the parameters A;Q and A-jo,  integrals (37) and (38) 

are to be extended in the above assumed region. This can be done by 
taking first the integration over the entire flow region and then sub- 
tracting from the resulting values the values of these integrals evalu- 
ated in the region D2. The region D2 consists of two areas, namely, 

a semicircular ring with r from 1 to 1.5 and 9    from jt/2 to -si/2  and 
a symmetrical tail-shaped area.  The dominating parts of the values of 
the integrals happen to be in the semicircular-ring area where the 
integration can be carried out analytically.  In the tail-shaped area, 
analytical integration becomes rather laborious and numerical integration 
has been used. After subtraction, these two equations are 

2.058756^! - 0.2021789A13 = -O.8773276 - 0.1912757A11A13 - 

0.1931520A-Q2 -  2.010768A13
2 + 

0.3^906li8A11
2A13 + 0.89^8537A11A   2 - 

0.0087952A11 + 9-2190li-l8A13
3 
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-0.335855Ui:L + 5.296336lA13 = O.76527W - 1.7^766^^3 - 

0.k62k36hA11
2 _ 2.088238A13

2 + 

0.736l79lA11
2A13 + 2.903363^^32 + 

o.3571^36A113 _ 7.1979^34A133 

While a solution does not exist before the integrals  in    D2    are sul3" 

tracted,  solution of these equations now does exist.     Solving, there 
result: 

All = _0-^37 A13 = 0.100 

With these values of Alx and A-^, the point at 0 = jt/2 with a 

unit local Mach number is computed to be at r = 1.6. This indicates 
that the shock waves probably would terminate at a value of r between 
1.5 and 1.6, and the region D]_ as assumed is a good approximation. 

The boundary conditions for ^2 and P2 are as follows: 

At r = eo,  p = p0 and therefore 

P27 = Pa e-f(*2) (39) 

At    r = 1,    since    ty-,     is taken as zero, 

\|r2 = 0 (kO) 

To  insure the vanishing of normal velocity, 

ifee = 0 (kl) 

On the shock waves and the common boundary, 

*2 = +1 (te) 
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Conditions (39), (kO),  and (kl)  are satisfied if \|rP and 

assumed in the following forms: 

2    anu    pp    are 

i2 = X Z A-mi 
m=l n=l r™      rin+2 sin n9 + 

00 

(r - 1) sin 0 X sin 0 2_ Cmr
m sinm0  (43) 

m=l 

and 

P2 ,-f(^2) 1/7 
B» 

r=oo  m=l n=0 
mn 

cos 2n0 
,2m (kk) 

Note that t2 becomes a function of y = r sin 0 at r = 00. The 

constants Cm are to be determined by the collation method in terms 

of A'^ so that *2 i.,  at a number of points on the shock waves 

and the common boundary.  With f(^pj  assumed, B'mn may be solved 

in terms of Afmn from equation (2k)  and the parameters A'^ may 

be calculated from equation (26) by using Galerkin's method.  A numeri- 
cal example has been tried.  It was found, however, that unless some 
modern high-speed computing machine is used the computation becomes 
very lengthy. 

New York University 
New York, N. Y. March 1, 1951 
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TABLE I 

PARAMETERS AND COMPUTED MAXIMUM VELOCITIES 

AT VARIOUS MACH NUMBERS 

Mo 0.3 o.k 0.V7 0.48 

All -0.0677 -0.1537 -0.296 -0.316 

A13 0.0255 0.04o4 0.088 0.087 

P  + 
r = 1 

p°   e = 90° 
0.8254 0.6972 0.3705 0.2680 

q  t  
r = 1 

if at 
u       0 = 90° 

2.1972 2.2859 3.4870 4.5525 
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TABLE II 

CONVERGENCE OF p-SERIES AT    MQ = 0.48 

Parameters 
taken in 

p    series 
Bll B11B12 

B11B12 
B20 

B11B12 
B20B21 

B11B12 
B20B21 

B22B23 

B11B12 
B20B21 
B22B23 
B30B31 
B32 

B11B12 
B20B21 
B22B23 
B30B3l 
B32B4O 
BlnBl^2 

All -0.0988 -O.O836 -OA9O -O.39O -O.395O -O.3547 -O.316 

A13 0.0777 0.0784 0.120 0.091* O.O96O 0.1110 0.074 

r =  1 
-£■    at 
p°          0 = 90° 

0.6943 0.6522 0. 14 16 0.2931 0.2686 0.2788 O.268O 

q     '        r = 1 

u          0 = 90° 
2.3765 2.5698 5.5104 3.5416 3.7902 4.5503 4.5525 
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TABLE IV 

CONVERGENCE OF t SERIES WITH 

12 PARAMETERS IN p-SERIES AT    MQ = OA8 

  
Parameters taken 

in ^-series 
All A  A A11A13 

r = 1 

p°   e = 90° 
0.1007 0.2680 

q     r= 1 -i at 
u    0 = 90° 

13.519^ h.5525 
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Figure  1.- Flow past an airfoil. 

Figure 2.- Simplified sketch of flow past an airfoil. 

NACA-Langley - 11-6-51 -1000 
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